Development of Sensor Array towards the

Cross-embodiment Pre-training
Rosh Ho

Introduction

One of the goals of the CPT project is to achieve multi-fingered dexterous manipulation by
examining multi-modal human demonstrations. Such demonstrations should include a wrist view in
addition to an ego-centric view. The primary goal of my project is to build hardware and develop the
setup for such data collection. The key modalities to collect with setup are an RGB and depth image
stream from the wrist position, finger-tip tactile sensing, and potentially motion capture if the timeline
permits.

Hardware

Objective

The objective is to obtain a visual RGB and depth data stream from both the wrist and head
point-of-view; the most cost-effective and time-efficient option would be to acquire one off-the-shelf.
As such, off-the-shelf gloves were used for the tactile sensing gloves, head mount, and wrist mount,
while the remaining sensors and adapters were custom-made. Fig [illustrates the current setup worn on
a person for visualization purposes. This differs from Wang et al., 2024’s DexCap (‘mocap to robotic
manipulation’) includes the force exertion from the finger-tips during data collection to allow for
further dextrality during object manipulation as opposed to a binary outcome of contact or no contact.

RealSense D435
& headmount

Object (e.g. Air Canister)

Tactile Sensing Gloves

RealSense D405
& wristmount

Figure 1: Head mount, wrist mowni, and glove sefup
demo picture

RGBD Sensor Criteria & Sensor Choice

As mentioned, we aim to collect RGBD data from both egocentric and wrist views. Depth
information can be achieved explicitly with a depth camera or include such information implicitly with
the help of mirrors (Chi et al.)(Fig 3). While such a setup would accomplish including depth
information with a much lower cost to the experiment, it likely causes incompatibility due to
representation learning used in the CPT project. Hence, we chose to collect depth information explicitly
with RGBD cameras.

Numerous RGBD cameras exist - Microsoft Kinect, Persee 2, Intel RealSense D435, D405,
Leap Motion 2, etc.,. Below, we will discuss our choice of egocentric and wrist-view cameras.

The requirements for an egocentric view camera are similar to the Intel RealSense cameras
commonly used for robotic manipulation. Hence, we choose a widely used D435 camera with an ideal
minimum operating distance of 30cm - 300cm, sufficiently encompassing the space from the head to
the hands and beyond. As seen in Fig 4, the head-mounted sensor selected was the Intel RealSense
D435.

However, the requirements for the wrist-view camera are different. First, we require the
minimum operating distance to be well under 30 cm, the average distance between the camera position
and the tip of the fingers. In addition, we require that the camera be as small as possible to be
convenient for manipulation. A recently released model of the IntelRealSene camera - the D405 came
to our rescue. As seen in Fig 2, the Intel RealSense D405 was selected as the wrist sensor due to the
small form factor, which prevents interference from potentially limiting wrist mobility, advertised high
resolution, and short minimum operating distance of 7cm, the shortest amongst all the options. The
Intel RealSense D405 was optimal for the wrist-view data collection.

Figire 2: Weist mount with Iired RealSense & light with glove Figure 3 Weist mount with Chi Er Al's stereo mivvor with glove

Fignre 4; Wreist mount with fntel RealSense. Chi Ei Als Steven
Mivvar, glove, and head mounied Intel D435 positioning

Wearable mount

We use readily available cost-effective wearable mounts produced for a GoPro to mount the
selected cameras to a human demonstrator. However, the included adapter mounts created an offset
(Fig 5) between the wrist and the camera that was too large, posing potential clearance issues while
conducting an action. To address this, I printed custom low-profile Gopro adapters and RGBD Intel
Realsense sensors, as seen in Fig 6 and Fig 7. Fig 6 shows the first version printed without accounting
for the mass of the sensors leaning towards one side of the mount, causing imbalance. This was
subsequently corrected in Fig 7 by shifting the mounts with additional support pegs in between the
compliant GoPro slotting mechanism.

Due to the RGBD Intel Realsense sensors operating on industry-standard M5 screws, additional
GoPro-to-MS5 metal screw adapters were acquired as 3D-printed plastic threads are not able to sustain
high tension from the screws and are vulnerable to breakage.

Figure 5: Original GoPro mount

Figure 6: Gopro low profile mount vi
Figure 7: GoPro low profile mount v2
Cable management
As seen in Fig I, another issue that may cause difficulties is the lack of cable management,

causing potential disruption to the data collection. As such, custom 3D printable mount points for the
velcro armbands are modeled as seen in Fig 8, 9, and /0.

Figure 8. Frontal view of cable management armband Figure 9: Top view of cable management armband

Figure 10: Cable management holder

Tactile Gloves

The tactile finger-tip gloves are intended to capture fingertip force exerted while manipulating
an object for more difficult manipulation with the 2-finger and 5-finger robots. The tactile gloves
capture fingertip forces exerted on the object for a better understanding of object manipulation. As seen
in Fig 11, the glove is constructed with a teensy 4.0 and single-tact sensor due to equipment availability
and ease of use. As the project continues, we seek to upgrade to a single-tact sensor with a larger
surface area to better register the entire fingertip for engagement instead of a potential lack of inputs.
The current issues with this glove are the need for more accommodation for different hand sizes and
limited positioning for the sensor pads, which vary between hand sizes. The following steps are to sew
on strips of velcro pads under the fingertips on more stretchable gloves to allow easy repositioning of
the sensor pads between data collection runs.

Figure 11 Taciife Fingertio Gloves (hack, front)

Software

In this section, I will discuss the progress in developing the software setup for data collection.

Troubleshooting

While Intel Realsense Viewer can visualize and record the raw data, the criteria to capture the
data in tandem with the tactile gloves renders the data collection to be done through ROS2.

The Intel RealSense D400 series sensors are listed as compatible with ROS1. Despite this
compatibility list and Intel RealSense D405 falling under the D400 series, the D405 was introduced
later, rendering library support only available through ROS2. This minor detail caused a significant
delay in the data collection process.

Data Collection

Fig 12 & 13 shows Rviz2’s RGB and depth stream visualization. While the depth may seem
noisy in the visualization, the distance data will remain consistent with the object and will be better
interpreted with a plain background. The current renderings are based on arbitrary minimum and
maximum depth values and await further optimization to find the ideal range. Fig /4 illustrates the
intended computation graph with an Intel node publishing Intel RealSense D405 and D435 depth, RGB
image stream, while a separate node publishes the tactile input from the glove. This is then all
subscribed by an individual node. As of the status quo, the RGB and depth visual streams are captured
at 35hz through ROS2 as images (Appendix I & II).

The follow-up actions are to capture the depth data and put it into the point cloud. Then create a
subscriber logger node to record all the data points. Also convert the data points into actual
measurements as the default raw data is not recorded in metric or imperial measurements.

Figure 12: Intel RealSense D405 RGE & Depih Stream Figure 13: Intel RealSense D435 RGE & Depth Stream

e Flpaisans D435
Pt dopi foad |

It Fleaisaencha [14 35
el RGE lead |

riiel Realsense Publsher
Il Flisaisanrchs 405
P | e tomad

4 Vel Pt D05 |
e IR i L

A Laf Ohows TRclis ngnd |

ilava Tactia Publishar

1 Might Cacws Taibe ingut |

Figure 14: ROS Computarion graph logic

Next Actions

The ROS2 subscriber can capture RGB and depth streams from the sensors. However, the
method for capturing the raw depth data is still being explored. While ROSbag? is a standard method
of capturing raw data and analysis, there may be other options for deep learning analysis. Alternatively,
we’re exploring methods to capture the depth data into PointCloud?2 - a ros topic list that can be
subscribed to.

Sarah currently programs the software side of the tactile gloves in ROS1. It has yet to be
bridged into ROS2 to capture the data simultaneously with the data collection from both Intel
Realsense sensors - recall, Intel Realsense D405 only functions with ROS2, hence the logistical
complication.

References
Chi, C., Xu, Z., Pan, C., Cousineau, E., Burchfiel, B., Feng, S., Tedrake, R., & Song, S. (2024).

Universal Manipulation Interface: In-The-Wild Robot Teaching Without In-The-Wild Robots.

ArXiv (Cornell University). https://doi.org/10.48550/arxiv.2402.10329

Wang, C., Shi, H., Wang, W., Zhang, R., Fei-Fei, L., & Liu, C. K. (2024, March 12). DexCap: Scalable
and Portable Mocap Data Collection System for Dexterous Manipulation. ArXiv.org.

https://doi.org/10.48550/arXiv.2403.07788

Appendix I (publisher node):

Python
#!/usr/bin/env python3

import rclpy

from rclpy.node import Node

from sensor msgs.msg import Image
from cv_bridge import CvBridge
import cv2

import pyrealsense2 as rs

import numpy as np

class IntelPublisher(Node):
def init_ (self):
super(). init ("intel publisher")
self.intel publisher rgb = self.create publisher(Image, "rgb _frame", 10)
self.intel publisher depth = self.create publisher(Image, "depth frame", 10)

timer_period = 0.05 # run every 0.05 secs
self.cv_convert = CvBridge() # converts cv2 to image

try:

self.pipe = rs.pipeline()

self.cfg = rs.config()

self.cfg.enable stream(rs.stream.color, 640,480, rs.format.bgr8, 30) # config RGB 480p 30fps

self.cfg.enable stream(rs.stream.depth, 640, 480, rs.format.z16, 30) # config depth 480p 30fps

self.pipe.start(self.cfg) # connect cam footage

self.timer = self.create_timer(timer_period, self.timer_callback) # ??? timer ends, hits callback and push frame to topic
except Exception as e:

print(e)

self.get logger().error("INTEL REALSENSE IS NOT CONNECTED")

def timer_callback(self):
frames = self.pipe.wait_for frames()
color_frame = frames.get color frame() # calling RGB stream

https://doi.org/10.48550/arXiv.2403.07788

depth_frame = frames.get depth frame() # calling depth stream
color_image = np.asanyarray(color frame.get data()) # RGB stream accessesed & converts ndarry
depth_image = np.asanyarray(depth _frame.get data())

self.intel publisher rgb.publish(self.cv_convert.cv2 to imgmsg(color image)) # cv2 format -> RGB conversion
self.intel publisher depth.publish(self.cv_convert.cv2 to imgmsg(depth_image)) # cv2 format -> depth conversion
self.get_logger().info("Publishing RGB & depth frame")

def main(args=None):
relpy.init(args=None)
intel publisher = IntelPublisher()
rclpy.spin(intel publisher)
intel publisher.destroy node()
rclpy.shutdown()

if name ==' main ":
main()

Appendix II (subscriber node):

Python

import rclpy

from rclpy.node import Node

from sensor msgs.msg import Image #, PointCloud2
from sensor msgs import point_cloud2

from cv_bridge import CvBridge

import cv2

rgb_path = r'~/home/rosh/cpt human demo/ros2 ws/log/rgb'
depth_path = r'~/home/rosh/cpt human_demo/ros2_ws/log/depth’

class IntelSubscriber(Node):
def init (self):
super(). init ("intel subscriber")
self.subscription _rgb = self.create subscription(Image, "rgb _frame", self.rgb frame callback, 10)
self.subscription_depth = self.create subscription(Image, "depth frame", self.depth frame callback, 10)
self.subscription_depth
self.cv_convert = CvBridge()

defrgb frame callback(self, data):
time = self.get clock().now()
self.get logger().warning("Receiving rgb frame")
current_frame = self.cv_convert.imgmsg_to cv2(data)
img = cv2.imread(current_frame)
cv2.imwrite('rgb'+str(time)+'.png',current_frame)

cv2.waitKey(1)

def depth_frame callback(self, data): # test function

time = self.get _clock().now()
self.get_logger().warning("Receiving depth frame")

self.get logger().warning(data.get depth_frame())
current_frame = self.cv_convert.imgmsg to cv2(data)
img = cv2.imread(current_frame)
cv2.imwrite('depth'+str(time)+'.png',current frame)
cv2.waitKey(1)

def main(args = None):
relpy.init(args = args)
intel subscriber = IntelSubscriber()
relpy.spin(intel _subscriber)
intel subscriber.destroy node()
rclpy.shutdown()

if name ==
main()

__main":

	Development of Sensor Array towards the Cross-embodiment Pre-training
	Introduction
	Hardware
	Objective
	RGBD Sensor Criteria & Sensor Choice
	Wearable mount
	
	
	
	
	
	
	
	
	
	
	Cable management

	Tactile Gloves

	
	Software
	Troubleshooting
	Data Collection

	
	Next Actions

	References
	Appendix I (publisher node):
	Appendix II (subscriber node):

